$\Omega_c(2770)^0$

$$I(J^P) = O(\frac{3}{2}^+)$$
 Status: ***

The natural assignment is that this goes with the $\Sigma_c(2520)$ and $\Xi_c(2645)$ to complete the lowest mass $J^P=\frac{3}{2}^+$ SU(3) sextet, part of the SU(4) 20-plet that includes the $\Delta(1232)$. But J and P have not been measured.

$\Omega_c(2770)^0$ MASS

The mass is obtained from the mass-difference measurement that follows.

VALUE (MeV)

DOCUMENT ID

2768.3±3.0 OUR FIT Error includes scale factor of 1.2.

$\Omega_c(2770)^0 - \Omega_c^0$ MASS DIFFERENCE

DOCUMENT ID

VALUE (MeV) EVTS

TECN COMMENT

70.8±1.5 OUR FIT 70.8±1.0±1.1

 $105\pm22\,$

AUBERT, BE 061 BABR $e^+e^- \approx \Upsilon(4S)$

$\Omega_c(2770)^0$ DECAY MODES

The $\Omega_c(2770)^0$ – Ω_c^0 mass difference is too small for any strong decay to occur.

Mode

Fraction (Γ_i/Γ)

 $\Gamma_1 \qquad \Omega_c^0 \gamma$

presumably 100%

$\Omega_c(2770)^0$ REFERENCES

AUBERT,BE 06I PRL 97 232001

B. Aubert et al.

(BABAR Collab.)

Created: 6/7/2007 11:56